Bi-objective matchings with the triangle inequality
نویسندگان
چکیده
This article deals with a bi-objective matching problem. The input is a complete graph and two values on each edge (a weight and a length) which satisfy the triangle inequality. It is unlikely that every instance admits a matching with maximum weight and maximum length at the same time. Therefore, we look for a compromise solution, i.e. a matching that simultaneously approximates the best weight and the best length. For which approximation ratio ρ can we guarantee that any instance admits a ρ-approximate matching? We propose a general method which relies on the existence of an approximate matching in any graph of small size. An algorithm for computing a 1/3-approximate matching in any instance is provided. The algorithm uses an analytical result stating that every instance on at most 6 nodes must admit a 1/2-approximate matching. We extend our analysis with a computer-aided approach for larger graphs, indicating that the general method may produce a 2/5-approximate matching. We conjecture that a 1/2-approximate matching exists in any bi-objective instance satisfying the triangle inequality.
منابع مشابه
Evaluation of Bi-objective Scheduling Problems by FDH, Distance and Triangle Methods
In this paper, two methods named distance and triangle methods are extended to evaluate the quality of approximation of the Pareto set from solving bi-objective problems. In order to use evaluation methods, a bi-objective problem is needed to define. It is considered the problem of scheduling jobs in a hybrid flow shop environment with sequence-dependent setup times and the objectives of minimi...
متن کاملEvaluation of Bi-objective Scheduling Problems by FDH, Distance and Triangle Methods
In this paper, two methods named distance and triangle methods are extended to evaluate the quality of approximation of the Pareto set from solving bi-objective problems. In order to use evaluation methods, a bi-objective problem is needed to define. It is considered the problem of scheduling jobs in a hybrid flow shop environment with sequence-dependent setup times and the objectives of minimi...
متن کاملOn the metric triangle inequality
A non-contradictible axiomatic theory is constructed under the local reversibility of the metric triangle inequality. The obtained notion includes the metric spaces as particular cases and the generated metric topology is T$_{1}$-separated and generally, non-Hausdorff.
متن کاملMaximal Induced Matchings in Triangle-Free Graphs
An induced matching in a graph is a set of edges whose endpoints induce a 1-regular subgraph. It is known that every n-vertex graph has at most 10 ≈ 1.5849 maximal induced matchings, and this bound is best possible. We prove that every n-vertex triangle-free graph has at most 3 ≈ 1.4423 maximal induced matchings, and this bound is attained by every disjoint union of copies of the complete bipar...
متن کاملSingle Approximation for Biobjective Max TSP
We mainly study Max TSP with two objective functions. We propose an algorithm which returns a single Hamiltonian cycle with performance guarantee on both objectives. The algorithm is analysed in three cases. When both (resp. at least one) objective function(s) fulfill(s) the triangle inequality, the approximation ratio is 5 12 − ε ≈ 0.41 (resp. 3 8 − ε). When the triangle inequality is not assu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theor. Comput. Sci.
دوره 670 شماره
صفحات -
تاریخ انتشار 2017